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Abstract – Farrowing survival is usually analysed as a trait of the sow, but this precludes esti-
mation of any direct genetic effects associated with individual piglets. In order to estimate these
effects, which are particularly important for sire lines, it is necessary to fit an animal model.
However this can be computationally very demanding. We show how direct and maternal ge-
netic effects can be estimated with a simpler analysis based on the reduced animal model and we
illustrate the method using farrowing survival information on 118 193 piglets in 10 314 litters.
We achieve a 30% reduction in computing time and a 70% reduction in memory use, with no
important loss of accuracy. This use of the reduced animal model is not only of interest for pig
breeding but also for poultry and fish breeding where large full-sib families are performance
tested.

reduced animal model / piglet survival

1. INTRODUCTION

The reduced animal (RA) model of Quaas and Pollack [6] was introduced
to obtain predicted breeding values without the need to set up equations for
all animals. This model distinguishes between animals with progeny records
(parents) and those without progeny records (non-parents). The section of A−1

pertaining to non-parents is diagonal. Equations are obtained for parents only,
then predicted progeny breeding values, equal to the parent average plus an
estimated Mendelian effect, are obtained by back-solving. Predicting breeding
values is a less computationally demanding task than estimating variance com-
ponents, and since computing power has increased, this model has lost favour
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and nowadays is rarely used. Many animal breeders believe that the compu-
tational benefits of the RA model are outweighed by the difficulty of setting
it up.

When pedigree information is available, variance components are usually
estimated by fitting the animal model [8]. In some species, animals with
records form large groups (litters) with common parentage. Here we revive
the RA model and show how it can be used to estimate genetic and environ-
mental variance components in this situation. An approximate version of the
model can be fitted even when the only data recorded are litter mean values
of piglet survival. We demonstrate that it is possible to fit an RA model with
standard software for variance component or BLUP estimation.

As an example we applied the method to piglet mortality data. Our model
treated survival as a trait of the piglet. The genetic influences on the trait con-
sisted of the genetic effect of the piglet itself (the ability of the piglet to survive)
and the maternal genetic effect (the ability of the sow to provide a suitable en-
vironment for survival of her offspring).

Often data are available only in the form of litter means or totals, such as the
number of stillborn piglets and number of piglets born alive. This information
is generally analysed using a model which treats survival as a trait of the sow
and ignores the direct genetic effect of the piglet. Assuming an average litter
size of 10 piglets, such a model is attractive, since the number of animals and
number of equations to be solved is reduced to around 10% of the full analysis.
In addition, such a model has fewer genetic effects and is perceived to be more
“robust”. The drawbacks to this model are that the direct genetic effect has
been ignored and breeding values for service sires are not generated.

The analysis described in the next section retains the simplicity of the con-
ventional analysis but has none of its drawbacks.

2. MATERIALS AND METHODS

2.1. Statistical methods

We assume observations on k litters of fullsib animals, with ni animals in
the ith litter. The total number of animals with records is N =

∑
ni.

With the RA model, we distinguish between animals with progeny records
(parents) and those with no recorded progeny (non-parents). A parent with its
own performance record appears twice in the dataset, initially as a member of
its birth litter and later as the parent of a litter.

The breeding value for a non-parent is represented as the average breeding
value of the sire and dam plus a Mendelian deviation specific to the animal,
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with variance 1
2σ

2
a(1− f ), where f is the average inbreeding of the two parents.

As an approximation, we ignore the effect of inbreeding on the Mendelian
variance, which is taken to be 1

2σ
2
a.

Let p be the number of parents in the pedigree. This number is usually a
small fraction of the total number of animals (parents plus non-parents). Let
a and m (p × 1) be vectors of breeding values for direct and maternal genetic
effects for parents. It is assumed that cov(a) = σ2

aA, cov(m) = σ2
mA, where A

is the numerator relationship matrix for parents. Equation (1) below describes
the RA model for direct genetic effects, with in addition maternal genetic, litter,
and fixed effects:

y = Xb +
(
P +

1
2

QS +
1
2

QD
)

a + Dm + Lu + e. (1)

The data vector is y (N ×1), Xb are fixed effects, P is an N × p matrix such that
Pi j = 1 if the ith animal is parent j, zero otherwise, Q is an N × N diagonal
matrix with Qii = 1 when animal i is a non-parent, zero otherwise, S and D are
N × p matrices identifying sires and dams, respectively, in the list of parents.
The matrix L (N × k) relates records to litters, and the litter effects u have
variance σ2

u. The error vector e has variance σ2
e for parents and σ2

e +
1
2σ

2
a for

non-parents (ignoring inbreeding).
Equation (1) suggests one way to set up the RA model to deal with direct

genetic effects. For parents, identify the animal but set sire and dam “missing”
and for non-parents, set the animal identity missing but give the sire and dam.
The matrix P + 1

2QS + 1
2QD is then the design matrix for animals “overlaid”

by half times the design matrices for sires and dams.
The RA model can be analysed with a BLUP or variance component estima-

tion programme of sufficient flexibility. For example, it must have the capacity
to “overlay” design matrices, and treat missing values in design matrices in an
appropriate way. More detail is given in the appendix.

It is interesting to explore to what extent the data can be reduced to litter
means without loss of information. Inspection of equation (1) shows that sim-
ply averaging results by litters will not result in a model that can be dealt with
easily. However, for the subset of results relating to non-parents, P = 0, Q = I,
and for these records, reduction to litter means is straightforward:

ȳ = X̄b +
1
2

(
S̄ + D̄

)
a + D̄m + u + ē (2)

where ȳ is a k × 1 vector of litter means for non-parents, and X̄, S̄ and D̄ are
design matrices relating fixed effects, sires and dams to litters, obtained by
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averaging rows of X, S and D. This involves no loss of information provided
any fixed effects which vary within litters are simple factors, such as sex of
piglet.

For a litter containing n non-parents, the variance of ē is (σ2
e +

1
2σ

2
a)/n.

The information in the data comprises (i) individual records for parents, (ii)
litter means, and (iii) the within-litters variance, with (ii) and (iii) calculated
from records for non-parents.

When there are no parents with their own performance records, analysis
is based on (ii) and (iii). Overlaying of design matrices can be avoided by
regrouping the genetic terms as 1

2Sa and D( 1
2a+m). Correlated effects for sire

of litter ( 1
2 a) and dam of litter ( 1

2 a + m) can be fitted with variances 1
4σ

2
a and

1
4σ

2
a + σ

2
m, and covariance 1

4σ
2
a. The analysis required is therefore an analysis

of litter means, weighted by litter size, with correlated random effects for sire
and dam of litter, and the covariance constrained to equal the sire variance.
This allows estimation of the direct genetic variance σ2

a (as 4 times the sire
variance), and the maternal genetic variance σ2

m (as the difference between
the dam and sire variances). This analysis is possible even when litter means
are the only data available. If there is a large number of litters, and sufficient
variability in litter sizes, it will also be possible to estimate the litter variance
σ2

u separately from the residual variance σ2
e +

1
2 σ

2
a, although it may be poorly

estimated.

If data are available for individual animals, the within-litters mean square
provides a separate estimate of the residual variance, and the litter variance σ2

u
can then be estimated much more accurately. The within-litters mean square is
always available with 0/1 data, since it can be calculated from the litter means
(proportions).

When there are parents with their own performance records, each is included
in the weighted analysis, with weight one, separately from the rest of its birth
litter. It is linked to its birth litter through its litter, sire and dam records, and
its breeding value is linked to its own litters through the overlaying of animal,
sire and dam design matrices described above and in the appendix. We refer to
this as the exact RA analysis.

The exact analysis requires identification of parents, overlaying of design
matrices, and the use of various devices described in the appendix. The sim-
pler analysis appropriate when there are no parents with their own records can
be applied to all progeny, ignoring the distinction between parents and non-
parents. This analysis will often capture most of the information in the data,
and might be considered as a useful approximation when the number of par-
ents with records is a small fraction of the total number of animals, or if litter
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means, such as percentage survival per litter, are the only data recorded. We
refer to this as the approximate RA analysis.

2.2. Example

The method is illustrated by estimating genetic and environmental compo-
nents of variance associated with farrowing survival. Survival data were col-
lected between 2000 and 2003 from two farms and four pig lines. Pedigree
information was available on the parents of the litters.

A piglet born alive was scored as 1, a stillborn or mummified piglet as 0. The
trait is therefore the probability of being born alive among all piglets (including
stillborn and mummified piglets). The model included a direct genetic effect
for each piglet, maternal genetic and litter effects. The fixed effects included
were parity of litter, farm, line and farrowing date (as a separate smoothing
spline for each farm-line combination).

Since genetic and environmental variances for this trait are small, we did
not consider it necessary to make any special allowances for the binary nature
of the trait. The analysis is therefore on the 0/1 scale. This also facilitated
comparisons with previous work.

There were observations on 118 193 piglets in 10 314 litters of 6592 sows
and 844 service sires (an average 11.5 animals per litter). Amongst the 7436
parents, 3565 had their own performance records for the litter in which they
were reared, and there were 19 850 animals in the parents’ pedigree.

The animal model was fitted in the usual way. In addition we fitted the exact
and approximate versions of the RA model, using the same or equivalent start-
ing values. Timings and memory use were compared for the three methods.
All calculations were performed using ASReml [2].

3. RESULTS

All three analyses converged without problems in between 5–10 iterations.
The results for the animal model and both forms of the RA model were virtu-
ally indistinguishable. Estimates and standard errors are given in Table I.

Average farrowing survival was 88.3%. The residual variance made up
93.6% of the total phenotypic variance. Of the remaining 6.4%, 3.9% was litter
variance and the remainder was approximately equally divided between direct
(1%) and maternal (1.5%) genetic components (Tab. I).

Table II gives the number of equations, the set-up time, time per iteration,
and memory requirement for each model. Both forms of the RA model led to
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Table I. Variance component estimates and standard errors.

Genetic Environmental
Direct Maternal Litter Residual Total

Full model 0.001 04 0.001 78 0.004 29 0.095 92 0.103 03
RA (exact) 0.001 04 0.001 78 0.004 29 0.095 87 0.102 98
RA (approx) 0.001 03 0.001 78 0.004 30 0.095 89 0.103 00
SE† 0.000 26 0.000 23 0.000 23 0.000 43 —

† for full animal model.

Table II. Computing parameters for full and reduced animal models.

No. of Time (min) Memory
Model equations set-up† iteration (MB)
Full 279 202 16.62 1.74 512
Reduced (exact) 53 665 2.70 1.49 128
Reduced (approx) 50 100 2.11 1.20 128

† includes formation of A-inverse.

reduced computing times compared to the full animal model. For the exact and
approximate versions of the RA model, the times per iteration were reduced
to about 85% and 70% of that for the full model. The corresponding figures
for the set-up time, which includes calculation of the A-inverse, and setting
up and reordering of the mixed model equations, were more dramatic at 16%
and 13%.

Neither version of the RA model required more than 128 MB of memory.
The full animal model required 512 MB.

4. DISCUSSION

The full and reduced animal models are exactly equivalent, provided that
full account is taken of the effect of inbreeding [4]. This requires a separate
residual variance σ2

e +
1
2 (1 − f )σ2

a for each litter, where f is the average in-
breeding coefficient for the two parents. The average parental inbreeding in
our data was f̄ = 0.061, but our calculations effectively assume that f = 0
for all litters. Since the results for the animal model and the RA model were
extremely close, there appears to be no need to allow for this small amount of
inbreeding.

The main advantage of the RA model over the full animal model is the re-
duction in the number of equations that have to be set up and manipulated by
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the programme. There is some advantage in the reduction in the size of the
A-inverse that must be calculated, but this does not result in dramatic improve-
ments in speed or memory use, since most programs will exploit the sparseness
of the large A-inverse associated with the full model. A secondary advantage
of the RA model is its greater transparency, in that the sources of informa-
tion for various components of variance are more obvious. This may be useful
when there is difficulty in obtaining convergence or uncertainty about whether
to include a particular term in the model.

The disadvantages of the RA model are associated with the difficulties of
setting it up. However, this does not apply to the approximate form of the
model, which will often be a satisfactory substitute for either the full animal or
the exact RA models.

The problem of analysing data recorded as full-sib group means was consid-
ered by Simianer and Gjerde [7]. They proposed an analysis based on averag-
ing the relationship matrix for all animals by blocks defined by full-sib groups,
but did not consider the possibility that parents might have both progeny and
their own performance records. The approach described here based on the RA
model is simpler and easier to implement with standard software.

With the approximate version of this model, it is possible to estimate a di-
rect and maternal genetic effect even when performances are recorded as litter
means or percentages. This substantially reduces the cost of recording for traits
such as farrowing survival, without important loss of accuracy, as shown by
the present study. In addition, the direct genetic effect of farrowing survival in
sire lines can be estimated from mean litter records, often the only data avail-
able. This is important for sire lines because in a crossbreeding scheme only
the direct genetic effect will have influence on the survival of piglets in com-
mercial production. The RA model is particularly useful when litter sizes are
large and only a small fraction of animals are selected to create the next gen-
eration. Therefore, the RA model is not only of interest for pig breeding but
even more important for poultry and fish breeding where large full sib families
are performance tested. With a model which includes both direct and maternal
genetic effects, the number of equations for the RA analysis is reduced, rel-
ative to the full animal model, by twice the total number of non-parents. For
example, an analysis of poultry data might involve 10 000 full-sib families of
average size 25. If there are on average 2 parents per litter, there is a saving
of 460 000 equations, with concomitant reductions in run-time and memory
requirement. Even greater reductions can be expected with typical fish data
sets.
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Table III. Variance components: comparisons with two previous studies.

Present Knol et al. Grandinson et al.
study Dam line Sire line

No. litters 10 314 2 820 2 874 1 046†
No. piglets 118 193 33 717 29 200 11 016
Average survival 88 93 93 94

Genetic direct 0.0010 0.0001 0.0004 —
Genetic maternal 0.0015 0.0032 0.0016 0.002
Litter 0.0040 0.0039 0.0031 0.004
Residual 0.096 0.059 0.057 0.052

† 1st parity only.

Although the emphasis of this paper is on methodology, we now briefly
discuss the results on variance components for farrowing survival.

Our results were in general agreement with previous research [3, 5].
Grandinson et al. [3] found that the direct effect was negligible but estimated
maternal genetic and litter variances similar to those of the present study. Knol
et al. [5] analysed sire and dam lines on different farms and found a small
direct genetic effect.

Some comparisons are given in Table III. The average farrowing survival
rate was smaller than that found in the other studies. This may reflect a dif-
ference in the definition of the trait. Mummified piglets were included in our
calculations, but it is not clear whether they were included in the other stud-
ies. All four analyses give the same litter variance, and there is approximate
agreement on the size of maternal effects. Our estimate of the direct genetic
component was larger than the estimate of Knol et al. [5].

Residual and total phenotypic variances were larger, perhaps reflecting the
different average survival rates.

Our analysis confirms the previous finding (e.g., Knol et al. [5]) that there
is a small but statistically significant direct genetic effect associated with the
individual piglet.

Fitness traits in livestock are generally of low heritability and the accuracy
of breeding values for these traits is often increased by including information
from correlated traits of higher heritability [1, 9]. Multivariate analysis is re-
quired to estimate the parameters needed for such an analysis but for t traits in a
multivariate analysis we need to estimate 1

2 t(t+1) genetic and residual parame-
ters. In addition, the number of equations for genetic effects increases linearly
with the number of traits, making multivariate analysis very demanding of
computing resources. The analysis described here yields the same parameters
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as a full animal model but does so with a smaller requirement in computing
time and memory. The advantages of this analysis are likely to increase with
the number of traits, and we suggest that the reduced animal model has a useful
role in estimating variance components in both a univariate and a multivariate
context.
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APPENDIX

Linking two occurrences of a parent

As an example, consider a litter of sire 1 and dam 2, comprising four an-
imals, three of which are born alive (score = 1) and one is stillborn (score =
0). Two of the survivors (animals 3 and 4) subsequently become parents. For
the full animal model, these four animals would appear in data and pedigree
files as

Data
Animal Sire Dam Score

3 0 0 1
4 0 0 1

D1 0 0 0
D2 0 0 1

Pedigree
Animal Sire Dam

3 1 2
4 1 2

D1 1 2
D2 1 2

together with subsequent pedigree lines featuring 3 and 4 as parents. Zeros
denote missing values. Sire and dam would not be included in the data file
when fitting the full animal model, but are shown here as missing values for
comparison with the RA model. The dummy identifiers D1, D2 for non-parents
are exchangeable within litters. The only non-dummy identifiers appearing in
the animal column of data or pedigree belong to a parent with own performance
record in its birth litter.

For the RA model, the relevant rows of data and pedigree are as follows:

Data
Animal Sire Dam Score

3 0 0 1
4 0 0 1
0 1 2 0
0 1 2 1

Pedigree
Animal Sire Dam

3 1 2
4 1 2

In this case the pedigree file involves only parents. For a parent in its birth
litter, animal ID is specified, sire and dam are set missing. In all other cases,
animal ID is set missing, and sire and dam of the litter are specified.

The non-parent results can be reduced to litter means, in which case this
litter contributes three rows to the data file:

Animal Sire Dam Score Weight
3 0 0 1 1
4 0 0 1 1
0 1 2 0.5 2
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Parameter constraints

Let θ1 = σ2
a, θ2 = σ2

e , θ3 = σ2
e +

1
2σ

2
a. All three variance parameters appear

in the model, and we must impose the constraint

θ3 − θ2 − θ12 = 0. (3)

This problem does not arise when using the RA model for BLUP calculations,
because in that case the variance ratio σ2

a/σ
2
e is fixed. ASReml allows propor-

tionality constraints but not the more general form of constraint (3). We found
various solutions to this problem.

(a) Instead of having separate residual variances for parents and non-parents,
we let σ2

e be a residual variance for all records, and set up an extra variance
component specifically for non-parents. There is a simple proportional rela-
tionship between the extra component (1

2σ
2
a) and the additive genetic vari-

ance (σ2
a).

A disadvantage of this approach is that it does not reduce the number of
effects estimated compared to the full animal model. Each parent has an ef-
fect, and each non-parent a Mendelian component. Nevertheless we found
some reduction in run times (around 10–20%) with this approach, perhaps
due to the smaller A-inverse used (parents only). An advantage of this ap-
proach is that BLUP for non-parents are easily reconstructed as the sum of
the average parental BLUP and the Mendelian component.

(b) Method (a) can be modified so that σ2
e +

1
2σ

2
a is the residual variance for

all records, with an “extra” variance (− 1
2σ

2
a) specifically for parents. This

is constrained to be −0.5 times the additive genetic variance, and the de-
fault positivity constraint is removed. This adds one extra equation for each
parent, but the number of extra equations is generally much less than for
method (a).

(c) ASReml allows a user-supplied “OWN” variance structure. It is possible
to define a residual variance for non-parents (σ2

e +
1
2σ

2
a) in terms of two

parameters, σ2
e and σ2

a, to be estimated separately. The first is constrained
to be equal to the residual variance for parents, the second to the additive
genetic variance.

(d) A Lagrange multiplier can be used for constraints such as (3). Unfortu-
nately this method is only feasible if programmed internally. Otherwise
it requires several programme runs. Some form of ad hoc adjustment is
required if variance components stray outside the parameter space at any
stage.
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Write θ for the vector (θ1, θ2, θ3), H′θ = 0 for the constraint, and denote the
score vector and information matrix by S and B.

With an unconstrained analysis, the update step is θ → θ + δ, where
δ = B−1S. The constraint can be accommodated by starting with a value of θ
satisfying the constraint and modifying the update step to δ = B−1(S − Hλ),
where (

B H
H′ 0

) (
δ
λ

)
=

(
S
0

)
.

The variance-covariance matrix for the constrained parameter estimate is the
leading submatrix of (

B H
H′ 0

)−1

.

All computing times reported in this paper are for method (b).
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